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Overview 

 Introduction 
 Literature Review 

 

 Model Description 
 

 Example Illustration 
 Case Studies 
 Eco-Vehicle Speed Control Application 
 Conclusions & Recommendations 

• Control Logic 
• Analytical Modeling 
• Physical Modeling 
• Fuel/Emissions Modeling 

2 



V
TT

I 
D

riv
in

g 
Tr

an
sp

or
ta

tio
n 

w
ith

 T
ec

hn
ol

og
y 

Introduction 
 The research develops an eco-speed 

control system to reduce vehicle fuel 
consumption in the vicinity of signalized 
intersections. 

I2
V

 

Uses I2V 
communication 
to receive SPaT 
information at 
an upcoming 
traffic signal. 

SP
aT

 
Using available 
SPaT and 
queued vehicle 
information 
optimize the 
vehicle 
trajectory. 

Ve
hi

cl
e 

Tr
aj

ec
to

ry
 

Using state-of-
the-art vehicle 
fuel 
consumption 
and acceleration 
models, fuel 
consumption of 
vehicle 
trajectories are 
compared. 

D
is

pl
ay

 

Vehicle-speed is 
assumed to be 
force-followed. 
Alternately, 
instantaneous 
velocity 
advisory can be 
displayed to the 
driver. 
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Similar Research 

4 

 
Author Findings Shortcomings 

Barth et al. [3] • Studied TSS to drivers using CMS 
and in-vehicle devices. 
• Found 40% savings 

• Used TTR info to advise 
drivers not to slow down 
if red is near.  

Asadi & Vahidi 
[4] 

• Developed a cruise control which 
reduces  Pr(reach stop-bar @ red). 
• Showed 47% savings. 

• Alternate speed profiles 
not studied using fuel 
consumption models. 

Tielert et al. 
[5] 

• Used VISSIM simulation to find 
factors affecting fuel savings if I2V 
communication is present 

• Used PHEM model for 
comparison and not 
optimization.  

Malakorn & 
Park [6] 

• Studied a CACC based on I2V 
• min{length of dec & acc} & 
min{idling time} 

• No FC model in 
objective. 
• Downstream neglected. 

Mandava et al. 
[7] 

• Optimal instantaneous velocity to 
drivers using TSS. 
• min{rate of dec/acc} 

• No FC model in 
objective 
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Model Description 
 Previous publications used a simplified 

objective function. 
 Here, the system computes a “proposed time 

to reach intersection” using 
• SPaT information 
• Queued vehicle information 
• Approaching vehicle information 

 Computes a “proposed fuel-optimal 
trajectory” using 
• Vehicle deceleration and acceleration models 
• Microscopic fuel consumption models 
• Roadway characteristics 

5 
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Model Description 

Fuel-
optimal 

trajectory 

SPaT info. From 
upcoming 

intersection 
(I2V) 

Queued vehicle 
information 
(V2I & I2V) 

Lead-vehicle 
information 

(V2V) 

Vehicle 
acceleration 

models 

Fuel-
consumption 

models 

Roadway 
characteristics 

6 
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Model Logic 
 Signal is currently GREEN 

• Case 1: GREEN will continue so that vehicle can pass 
through at current speed. 

• Case 2: GREEN will end soon but vehicle can legally 
pass through intersection during the green or yellow 
indication if it speeds up within speed limit. 

• Case 3: GREEN will end soon and vehicle cannot pass 
during this phase. 

 Signal is currently RED 
• Case 4: RED will continue but vehicle needs to be 

delayed to receive GREEN indication. 
• Case 5: RED will end soon so that vehicle will receive 

GREEN when it reaches stop-line at current speed. 
 7 
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Model Logic 

 Cases 1,2, 3 and 5 are fairly simple 
 Case 4 requires trajectory optimization 

every time step within detection zone. 
 Min{fuel consumed} 
 Subject to 

• Fixed travel distance upstream. 
• Fixed time to reach intersection. 
• Variable speed at intersection. 
• Vehicle acceleration characteristics 

downstream to accelerate back to initial speed. 
 8 
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Model Logic 

9 

 Speed trajectory at intersection is divided into:  
• Upstream section (deceleration to achieve delay) & 
• Downstream section (accelerate to original speed) 
• Cruising section to maintain a constant distance of 

travel. 
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Deceleration Model 
TTG = t seconds 

DTI = x meters 

Approach speed = va m/s 

Speed at signal = vs m/s 

Delay required = ∆t seconds 

Veh. deceleration = d m/s2 

Cruising dist. = xr m 

Conserve x and t : 
 

             and 

 

Combining them: 

 

 

Solving for va : 

 

 

For any va , xr is given by: 

2 2

2
a s

r
v vx x

d
−

= + a s r

s

v v xt
d v
−

= +

2 21
2

a s a s

s

v v v vt x
d v d

 − −
= + − 

 

( )2 2 2s a av v d t d d t v t x= − ⋅ + ⋅ − +

2 2

2
a s

r
v vx x

d
−

= −
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Acceleration Model 

 Rakha & Lucic Model [8] was used. 
• Vehicle dynamics model. 
• Acceleration = Resultant Force/mass 
• Resultant Force = Tractive Force - Resistive 

Force 
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Fuel Consumption Model 

 Virginia Tech Comprehensive Power-based 
Fuel Model (VT-CPFM) Type 121. 
• Based on instantaneous power 

 
 
• Parameters α0, α1 and α2 can be calibrated using 

EPA fuel economy ratings. 
• Does not result in a bang-bang control 

• Optimum acceleration is not necessarily full throttle 
acceleration 

 

2
0 1 2

0

( ) ( )      ( ) 0
( )

                                   ( ) 0
P t P t P t

FC t
P t

α α α
α

+ + ∀ ≥
=

∀ <
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Example Illustration 

 Simulation was conducted for different 
approach speeds considering the following 
parameters: 
• TTG = t =14 s 
• DTI = x = 200 m 
• Approach speed = va = 20 m/s 
• Delay required = ∆t = 4 s 
• dmin = 0.82 m/s2 (computed) 
• dmax = 5.90 m/s2 (limiting). 

 13 
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Example Illustration 

14 



V
TT

I 
D

riv
in

g 
Tr

an
sp

or
ta

tio
n 

w
ith

 T
ec

hn
ol

og
y 

Simulation Results 

0
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el
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ed
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l)
 

Case Number (increasing initial deceleration>> ) 

Fuel consumed in seven cases of 30% throttle 
by Chevy Malibu (l) 

Cruising Fuel (l)
Acceleration Fuel (l)
Upstream Fuel (l)

optimum 
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Case Studies 

 Experiment repeated 
using various sets of  
• Approach speeds 
• Desired delay estimates 
• Vehicle Types 

 80 cases simulated 
maintaining a constant 
DTI of 200 m. 

[ ]max( ) ( ) ( )i i s a cruise a i accFC ds FC v v FC v x x −= → + × −

16 
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Case Studies 

 Four vehicles were tested: 
• Vehicles selected were available at VTTI and 

thus were validated using field measurements 

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 
Vehicle Info SAAB Mercedes Chevy Chevy 
Model 95 R350 Tahoe Malibu 
Year 2001 2006 2008 2007 
Engine Size (L) 2.3 3.5 5.3 2.2 
EPA Rating (City/Highway) 21/30 16/21 14/20 24/34 
Fuel-optimal speed 45.9mph 37.3mph 37.3mph 41.6mph 

17 
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Sample Results 
(Fuel-consumption matrix) 

18 

Le
ss

 fu
el
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on

su
m

ed
 

More fuel 
consumed 

Inference 1:  The greater the acceleration level, the higher is 
the fuel consumed. 
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Sample Results 
(fuel consumed in ml at 20% throttle) 
 Results from two separate simulated cases are shown 

below (for 20% throttle) and are color coded according 
to fuel consumed. 

19 

Va = 20m/s, TTG = 14s, DTI = 200m 
dec(m/s2) SAAB R350 TAHOE MALIBU 

0.8163 50.90 76.00 59.20 44.60 
1 47.50 70.00 55.50 42.20 

1.25 47.00 67.00 53.00 41.70 
1.5 46.00 67.50 52.40 42.20 

1.75 45.70 66.90 53.20 42.00 
2 45.40 66.40 52.80 41.60 

2.5 45.10 65.90 52.20 41.40 
3 46.00 65.40 51.80 41.20 
4 45.70 65.40 51.70 41.10 
5 45.70 64.90 51.30 41.90 

Va = 11m/s, TTG = 22s, DTI = 200m 
dec(m/s2) SAAB R350 TAHOE MALIBU 

0.1736 20.20 23.90 27.90 17.90 
0.25 20.10 23.90 27.30 18.00 
0.5 20.30 24.20 27.40 18.60 

0.75 21.00 24.20 27.20 18.90 
1 21.20 24.50 27.30 18.80 

1.5 21.20 24.50 27.30 18.80 
2 21.40 24.80 27.40 18.90 
3 21.40 24.80 27.50 18.90 
4 21.40 24.80 27.50 19.00 
5 21.40 24.80 27.50 19.00 

Inference 2: Fuel-optimal case may not always involve minimal 
deceleration level 
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Sample Results 
(deceleration in m/s2 in optimum case) 

Chevy Tahoe 
  Approach Speed (mph) 
  25 35 45 55 

D
el

ay
 (

s)
 2 1.00 2.00 1.00 4.75 

4 5.75 3.50 5.75 5.00 
6 2.75 5.00 5.75 5.50 
8 3.25 5.75 4.50 5.75 

10 3.75 5.75 5.25 5.75 

Chevy Malibu 
  Approach Speed (mph) 
  25 35 45 55 

D
el

ay
 (

s)
 2 0.25 0.50 1.75 2.50 

4 5.75 1.25 5.75 3.00 
6 0.25 1.00 5.75 5.50 
8 0.75 5.75 5.75 5.50 

10 1.00 5.75 4.75 4.25 

Inference 3:  
Deceleration in fuel-optimal case is proportional to 

(a) Approach Speed 
(b) Delay to be induced in the trajectory 

20 

Fuel-optimal Speeds 

Chevy Tahoe 37.3 mph 

Chevy Malibu 41.6 mph 
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Sample Results 
 (% difference between worst case and best case) 

 SAAB 95 
  Approach Speed (mph) 
  25 35 45 55 

D
el

ay
 (

s)
 2 11% 70% 91% 104% 

4 27% 54% 81% 86% 
6 21% 43% 66% 71% 
8 20% 43% 56% 60% 

10 20% 35% 51% 59% 

Chevy Tahoe 
  Approach Speed (mph) 
  25 35 45 55 

D
el

ay
 (s

) 

2 21% 102% 134% 154% 
4 38% 79% 117% 130% 
6 30% 55% 102% 110% 
8 28% 64% 89% 96% 

10 27% 54% 81% 98% 

 Mercedes R350 
  Approach Speed (mph) 
  25 35 45 55 

D
el

ay
 (

s)
 2 19% 90% 110% 118% 

4 38% 70% 93% 98% 
6 30% 53% 78% 83% 
8 28% 53% 67% 68% 

10 29% 45% 62% 71% 

Chevy Malibu 
  Approach Speed (mph) 
  25 35 45 55 

D
el

ay
 (

s)
 2 10% 67% 88% 96% 

4 27% 54% 76% 85% 
6 20% 40% 64% 71% 
8 19% 42% 57% 62% 

10 22% 35% 52% 63% 
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MATLAB  Application 
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MATLAB  Application 
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MATLAB  Application 
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Conclusions 
 Presentation demonstrates that objective 

function 
• Should not be simplified 

• Need to include a fuel-consumption model 
• Model should be robust 

• Need to incorporate entire downstream and 
upstream maneuver.  

 Fuel-optimum trajectory is case-specific and 
depends on many factors. 
• Does not necessarily imply minimum deceleration 

level 
 Potential savings for approaching vehicle: 

• 53% for sedans and 65% & 80% for the R350 & 
Tahoe. 

25 
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Conclusions 
 Deceleration upstream is case-specific. 
 Initial deceleration is proportional to approach speed. 
 Initial deceleration is also proportional to required 

delay. 
 Acceleration depends on  

• Speed at intersection  
• Function of deceleration level 

 In-vehicle module demonstrated with MATLAB 
application. 

 Accelerating at lowest throttle level 
• Most fuel-optimal downstream action, but reduces discharge 

rate. 
 Possible fuel savings is proportional to engine-size and 

approach speeds. 
 26 
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Thank You! 

Go Hokies! 
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