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INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS MANAGED BY THE
TRANSPORTATION RESEARCH BOARD (TRB)

This investigation was completed as part of the ITS-IDEA Program, which is one of three IDEA
programs managed by the Transportation Research Board (TRB) to foster innovations in surface
transportation. It focuses on products and results for the development and deployment of intelligent
transportation systems (ITS), in support of the U.S. Department of Transportation’s national ITS
program plan. The other two IDEA programs areas are TRANSIT-IDEA, which focuses on products
and results for transit practice in support of the Transit Cooperative Research Program (TCRP), and
NCHRP-IDEA, which focuses on products and results for highway construction, operation, and
maintenance in support of the National Cooperative Highway Research Program (NCHRP). The three
IDEA program areas are integrated to achieve the development and testing of nontraditional and
innovative concepts, methods, and technologies, including conversion technologies from the defense,
aerospace, computer, and communication sectors that are new to highway, transit, intelligent, and
intermodal surface transportation systems.
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simulator data for our use in this experiment and for their continued efforts to help us understand and
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Technology Center’s Divisional Technology Manager for Honeywell’s MicroSwitch  Divisions, who
provided the Internal Research and Development funding which financed the first phase of research
under this program.

The publication of this report does not necessarily indicate approval or endorsement of the findings, technical
opinions, conclusions, or recommendations, either inferred or specifically expressed therein, by the National
Academy of Sciences or the sponsors of the IDEA program from the United States Government or from the
American Association of State Highway and Transportation Officials or its member states.
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Adaptive techniques were also developed for use by a
MIR. We focused on the problem of discriminating lane
change intents (left and right) from lane following
intents in the driver data described above. Analyzing the
literature and our own driver data, we developed an
intent classification scheme which operates primarily on
patterns occurring in relative heading angle (or yaw).
Using another adaptive technique (learning vector
quantization) on the relative heading data, and operating
over the limited number of lane changes available, we
developed a classification approach which achieved
good accuracy in discriminating the three intent states.
Fur thermore ,  i t  appears  reasonable  that  th is
discrimination can be performed in less than a second in
most cases, although this depends upon allowable false
alarm rates, which we have not yet studied.

Finally, we integrated our AMA and MIR modules
with limited-capability versions of Road and Traffic
Assessment, Decision System and Driver Interface
modules into a software demonstration system which
illustrates a complete, if simplified, DAWS as described
in Figure 1. Using examples from our simulator data,
even this simple system is capable of providing both
state- and event-based alarms based on the needs of the
individual driver.

The existence of large and consistent driver
differences in our data serves to illustrate the need for a
DAWS to augment crash countermeasures systems.
Furthermore, the techniques and architectures developed
on this program have paved the way to constructing
various types of DAWS systems. More work is needed
to validate our modeling approaches (especially with
regards to detecting degraded driver states), to scale up
the number of intent states-recognizable by the system,
and to ensure that adequate sensor data exists to feed the
DAWS. Nevertheless, this work shows that such systems
are possible and hold promise for increasing driver
safety.

2 PROBLEM STATEMENT

2.1 PRODUCT CONCEPT AND POTENTIAL IMPACT

The utility and effectiveness of crash countermeasure
systems will depend on their acceptance and use by the
driving public. If the warnings provided by these
systems are perceived as unreliable or unrelated to a
driver’s behavior, acceptance will be minimal and the
potential of the countermeasure system to reduce
accidents will not be realized. Given the variability of
normal driving behavior throughout the driving
population, a major source of unreliable performance

(i.e., false positives and false negatives) in such
warning systems will be the failure of the system to
correctly interpret the driver’s actions. A traditional
warning system would incorporate a fixed warning
threshold which would be completely accurate only for
the “average” or the “worst case” driver. The system
will tend to misclassify the behavior of those drivers
whose style deviates from the norm, either through
being more cautious or more “sporty.” What is needed
for a successful crash countermeasure system is the
ability to adapt the warning threshold to individual
differences in driving style. We call a system with this
capability a Driver-Adaptive Warning System (DA WS).

In this project, our objective was to explore
machine learning techniques for acquiring an
individualized model of driving behavior and to use
that model to provide individualized warnings in crash
countermeasure systems, thus increasing reliability and
user acceptance. In our concept, a crash
countermeasure system will include an on-board
adaptive module that analyzes the driver’s control
actions (measured by on-board sensors) and, over a
short period of time, develops an individualized model
of the specific driver’s driving style. This individually
adapted model can then be used for two related
purposes.

First, in conjunction with a model of the vehicle
and the road surface, it can be used to make a
judgment as to whether the vehicle is being operated
within safe bounds, a judgment which takes the specific
driver’s normal behaviors into account. In other
words, whereas a static warning system might detect a
dangerous state for the “worst case” driver and sound
an alarm, a DAWS would check whether this behavior
was characteristic of normal, safe driving behaviors for
this driver (who might be more adept) and, if so, would
suppress the needless warning.

Second, the learned model will detect aberrations in
a specific driver’s behavior. Increased response times,
more frequent or larger corrections in turning, etc. can
be compared to the normal model of driving behavior
for this driver to detect drowsiness, intoxication, etc.
Such a capability could also provide a means of
detecting when a vehicle is being driven by an
unapproved driver.

For both applications, the ability to quickly,
unobtrusively obtain a model of the individual’s
driving “style” is critical. The goal of this IDEA
project was to develop and evaluate adaptive methods
for acquiring this individualized model and to begin
consideration of how such a model could be used in a
DAWS.
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autonomous control and did not use such models to
provide warnings. Godthelp’s (1988, 1985) work on
human control  of  vehicles  has  informed our
individualized modeling approach, but again, he has not
addressed DAWS-like applications.

We intended to provide only an adaptive mechanism
for detecting hazardous events (e.g., potential crashes),
but our approach also shows the potential to detect
persistent hazardous states in an individual driver (e.g.,
inebriation, fatigue, etc.) While there is substantial
ongoing research for this latter application, our approach
is innovative in being completely non-intrusive. Using
only detectable vehicle parameters (e.g., wheel position,
speed, lane deviation, relative heading, etc.) our
approach may be able to detect deviations from a
driver’s normal behavior, and to discriminate the normal
driving of one driver from another.

2.3 PROGRAM GOALS

The high-level architecture of our proposed DAWS
was presented in Figure 1. Our goal was to learn
individualized behavioral models for different
maneuver intent states of a driver. Such models would
populate the Adaptive Maneuver Assessment (AMA)
module of our DAWS. Then we intended to develop a
Maneuver Intent Recognition (MIR) model which
would enable discrimination among maneuver intent
states based on combinations of features from the
vehicle, driver and external world. By separating the
intent model from the models of driving behavior, we
hoped to gain increased accuracy in these models. This
would facilitate the learning process, and increase the
system’s flexibility in making multiple predictions
given various intents. A final Decision System and
Driver Interface would combine inputs from these
modules to provide individualized warnings, but work
on these modules was not a primary focus of this
contract.

More generally, our goals for this program were to:

Establish the existence of individual differences in
driving style to evaluate the need for a DAWS,

Demonstrate the ability of adaptive learning
techniques to acquire an individualized model of
driving style suitable for adapting warnings to that
driver in future driving conditions-and to provide
guidelines for what types of learning approaches
work best for such an application.

Establish the ability of such learning approaches to
discriminate between various driver intent states
(e.g., lane following versus lane changing).

Provide an initial, high-level design for a DAWS
which uses the capabilities described above.

3 RESEARCH APPROACH

3.1 PROJECT METHODOLOGY

The research plan for our IDEA project proceeded in
phases to develop the proposed system architecture in
Figure 1. In Phase I, supported by Honeywell Internal
Research and Development  funds ,  we began
development of the individualized behavioral models of
an AMA by exploring various adaptive learning
approaches to acquiring behavioral models for a single,
simple driver intent: lane following. We began by
acquiring driving data from a variety of individuals
operating the University of Iowa’s driving simulator and
using this data to evaluate the ability of various adaptive
algorithms to predict future behavior for those drivers in
similar situations.

In phase II, funded by the TRB IDEA grant, we
began development of a MIR module by devising
techniques for discriminating among possible intent
states. We accomplished this via models capable of
discriminating between lane following and lane
changing intents.

3.2 TECHNICAL CHALLENGES

3.2.1 Phase I

The specific technical challenges during phase I:

1.

2.

3.

4.

Obtaining, interpreting and processing driving data
from a variety of individuals in realistic, but
appropriately constrained driving conditions.

Configuring learning experiments by selecting and
acquiring several machine learning approaches and
adapting them to work on the data collected above.

Interpreting these experiments to ascertain whether
there  were detectable, reliable differences in driving
style across drivers, and ascertain which learning
approaches work best to provide individualized
behavioral models for an AMA from the data likely
to be available to a DAWS.

Applying the results of the above studies via the
initial, conceptual design of various complete DAWS
systems and reasoning about their operations.

3.2.2 Phase II

The specific technical challenges during phase II
included:

1. Improving and extending the data collected in phase I
to include data for additional driver behaviors and
additional data parameters as available and needed.
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2. Developing an initial MIR module capable of
discriminating between maneuver intents, specifically
between intended lane changes and lane following.

3 Integrating this MIR capability with the AMA
behavioral model for lane following developed in
phase I into a unified framework for use in a DAWS.

4. Developing a software-based demonstration system
to integrate our initial AMA and MIR modules into a
simplified but complete DAWS system.

4 RESULTS

The primary goals of phase I were the development of
an approach to acquiring individualized behavioral
models for use in the AMA modules of a DAWS (cf.
Figure l), and with the initial development of a DAWS
architecture which would make use of this capability.
Steps toward these goals are described below.

4.1 PHASE I RESULTS

4.1.1 Obtaining Data

After contract award in April, 1994, we began seeking
driving data for a variety of individual drivers. Since we
wanted to acquire models of individualized driving
behavior in a single, simple driver intent state during
phase I, we sought data for multiple drivers in straight,
lane-following scenarios without the interference of
other vehicles, lane changes, road curves or other
hazardous road conditions.

The limited scope of this project precluded collecting
new data, customized for our needs. Accordingly, we
attempted to isolate appropriate data from previous
experiments on the psychophysics of driving behavior.
After conversations with the University of Iowa Center
for Computer-Aided Design, we purchased a set of data
from an experiment involving 38 subjects of varying
experience driving a track involving entering and
leaving a highway.

4.1.2 Organizing and Refining Data

Because this data was not customized for our needs,
organizing, refining and processing it for use with our
learning algorithms took a significant portion of the
initial phases of this contract. One problem we
encountered was the fact that the simulation laboratory
at Iowa saves only the variables that are of interest for
the immediate experiment; most other data is
discarded.or the experiment which seemed best suited
for our needs, the data which was available in the
laboratory’s tiles consisted of measurements of the
following variables, collected at a rate of 30 Hz, for each

driver: vehicle center of gravity position in three
dimensions, vehicle speed, vehicle rack position, lane
deviation (from center of current lane), and road type
(straight or curved).

Of these, various problems in the data (described in
the appendix to this report) left us with only lane
deviation, velocity and rack position for use in learning
models in our initial work. While still offering a feasible
data set from which to predict driving behavior, note that
this set does not include many variables which we might
desire to make such predictions. We did not have many
of the variables indicating driver intent such as use of
directional indicators. We also had only measures of the
vehicle’s state (speed and rack position) but no direct
measures of the driver’s actions that affect the vehicle’s
state such as brake and accelerator position. We also had
no indication of proximity of other vehicles, an
important consideration when identifying, e.g., a passing
maneuver.

Finally, the data available during this phase suffered
from various types of “noise” including some
uncertainty in characterizing a period of data as straight
lane following (as opposed to curve following or lane
changing), some basic inaccuracies in the simulator’s
recording of vehicle position, and some complicating
factors in driver behavior such as other vehicles and
roadway obstructions.

Each of these factors made the job of a learning
algorithm more difficult. In order to follow this
research direction further, we should collect data in
experiments specifically designed to serve the needs of
a DAWS:  The fact that we could successfully learn
individualized driving models even with this reduced
data set provides an added measure of confidence for
the viability of this approach in a more robust, real-
world data environment.

This data organization and refinement effort took
more time than expected, but the end result was the
development of a data set for phase I. That set included
measures of speed, rack position and lane deviation for
three episodes of lane-keeping behavior for each subject.

4.1.3 Learning Approaches

The framework for learning in the state-based
approach is shown in Figure 3. This is a commonly used
technique in observer-based fault detection (e.g., Frank,
1991). The driver/vehicle system is monitored by an
“observer” which compares an adaptive model to system
control performance. Normally, the model tracks the
behavior of the driver with only moderate errors,
(residuals). When the driver fails to perform as
expected, residuals become greater, triggering a warning
system.

5
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FIGURE 3 Framework for observer-based fault detection in DAWS.

During Phase I we tested several adaptive methods
for acquiring individualized models of driving behavior.
Specific techniques included: statistical time series
techniques, multi-resolution CMAC (Cerebellar Model
Articulation Controller) neural networks, and multi-layer
perceptron neural networks (trained by variants of back-
propagation). Results of learning experiments involving
each of these techniques are presented in brief below.

structural manipulations improved generalization
somewhat, but we were not able to show generalization
performance beyond the level of time series models.

In one set of trials, we used various ARMAX  models
(auto regressive moving average with exogenous
variables) to predict rack position one second (30 time
steps) into the future from observed past rack positions,
velocities, and lane deviations. This learning technique
can be applied in an off-line mode, as we used it, or an
o n - l i n e  m o d e  w i t h  Kalman fi l ters  (Ljung and
Soderstrom, 1983).

A third set of trials used multi-layer perceptron
networks (Hertz, Krough and Palmer, 1991)  arguably
the most widely used network architecture, again to
predict rack position 1 second into the future. In order to
capture trend information, we used as input a sliding
“window” of data about the car/driver state. Each
window contained three parameters: lane deviation, rack
position, and velocity, for some time k.

The results indicated general agreement with the
driver at a coarse time scale, but substantial
disagreement at finer scales. This was more evident
when running the model “open loop” (without reference
to actual driver responses.

The network was trained using conventional
backpropagation via a regime where the learning rate
decreased by an order of magnitude when performance
reached a plateau. An example of this network’s
behavior on test (rather than training) data is given in
Figure 7 (upper panel).

4.1.4 Analysis of Learning Approaches

Another set of trials used the cerebellar  model
articulation controller (CMAC) technique described by
Albus  (1975). This technique is often employed in real-
time applications due to its rapid learning capability. The
version we used employed a cascade of three CMACs at
different resolutions (cf. Moody, 1989). Third order B-
Splines  were used as the receptive field functions. We
investigated CMACs with inputs for rack position at - 1, -
2 and -3 seconds, and lane deviation at -1 and -2
seconds.

The CMACs learned very quickly and were capable
of providing a virtually perfect prediction of the data
used to train them. Unfortunately, CMACs so trained
were unable to generalize well to new examples. Various

Examination of driver records from the simulator
indicated some interesting features of lane-following
behavior. First, the data showed the existence of
significant, consistent individual differences in the
corrective actions taken to maintain lane position, even
over the same segment of roadway. These differences
are reflected in, for example, the fact that an ARMAX
model trained on segment 1 for driver 1 will perform
substantially better on segment 2 for driver 1 than on
segment 1 for driver 2. Second, the data also showed that
corrective actions are not smooth and continuous like the
output of a closed-loop linear controller, but show a
discrete step-like structure. This nonlinearity has been
variously described. Baxter and Harrison (1979) have
attempted to model it with a time lag coupled with

6
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hysteresis. While capturing some of the flavor of the
response, their model proved very laborious to fit.
Godthelp (1988) proposes a modal scheme. In one
mode, the driver engages in error correcting closed-loop
control; in the other, “error neglecting” mode, the driver
operates in open loop, and allows position error to
accumulate. The use of such a model requires a
switching scheme to decide when to go from one mode
to the other. The data presented by Godthelp suggest that
several factors may influence such a switching decision..

The non-linearity of the data and complexity of the
parametric models make the nonparametric techniques,
such as the multi-layer perceptron network, appear
relatively attractive. It is likely that real driver behavior
(outside of the laboratory) will have an irreducible
random component. Consequently, the precise time the
driver decides to make a correction, and its precise
magnitude may vary from instance to instance, even in
identical circumstances. Thus, it is unlikely we will be
able to formulate a perfect predictive model.
Fortunately, an approximate model may still provide
useful information.

4.1.5 Development of DAWS Architecture

The learned models described above are capable of
representing “typical” or “normal” behaviors for a
given driver. We developed DAWS architectures
which use these models to (1) recognize when current
behaviors for a given driver are abnormal, and (2)
determine when a situation requires behaviors beyond
“normal” for that driver.

Our adaptive models provide the basis for two types
of alarms: state-based and event-based. A state-based
system detects and responds to aberrant driver behavior
indicative of an unsafe state (e.g., drunkenness, fatigue,
inattentiveness, etc.). Event-based systems detect and
respond to conditions or behaviors which indicate the
existence of a safety-critical event. Designs for using our
adaptive models in each type of warning system will be
described below.

A state-based approach is simple using our learned
models. To detect deviations from normal behavior, we
would train an individualized model and use it to predict
future driver/car behavior. Predictions would be matched
against actual behavior to yield an error measure over
time (cf. Figure 3). Significant deviations are detected
when the error measure crosses a threshold. The formula
for choosing an ideal threshold is the subject of future
studies.

Event-based approaches work somewhat differently.
A simple event-based approach would build directly on
the state-based approach as illustrated in Figure 4. The
large rectangle represents all possible car and driver
behaviors. The outer oval represents the boundary of

safe driving behaviors based on the physical capabilities
of the vehicle and the road-what Onken  calls the
Absolute Danger Boundary (Kopf and Onken,  1992).
Conditions outside this oval are inevitable crashes;
conditions inside the oval might be crashes based on
driver behavior. The goal of an event-based DAWS is to
set an individualized warning threshold which provides
alarms in all necessary conditions but minimizes them in
unnecessary ones. This threshold would be determined
on the basis of the individualized driver behavior model
described above- and might be adjusted as driver state
was determined to be degraded. The warning system
would sound alarms whenever safety-critical events
occurred (i.e., the driver crosses the warning threshold).
Additional event-based approaches involve detecting the
need for abnormal driver events or using the MIR to
detect problematic driver intents (e.g., lane changing into
a non-existent lane).

The goal of phase I was simply to develop tentative
DAWS architecture designs which would make use of
the learned driver behavior model. The DAWS design
used for our final demonstration system (cf. Section
4.2.5 below) was drawn from among these possible
architectures. Although most of these candidate designs
remain conceptual, we are comfortable that the learned
driver models we are developing will be useful for a
variety of both state- and event-based DAWS systems.

4.2 PHASE II RESULTS

The primary phase II goal was to develop a second
adaptive component to recognize driver intent-the
Maneuver Intent Recognition (MIR) module (cf. Figure
1). The MIR assists a DAWS in distinguishing normal
maneuvers (e.g., lane changes) from control problems.

Absolute
danger ,
boundary

Individual
warning
boundary

Boundary
adapted for
degraded
driver status

FIGURE 4 Various warning boundaries.
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4.2.1 Extending Data

As a first step toward developing MIR, we worked with
the University of Iowa to refme our sample data, remove
noise, and provide additional data parameters such as
relative vehicle heading and road curvature (Figure 5).
We also obtained the relevant section of the road
database used in these experiments. The course is shown
in Figure 6.

Subjects entered an east-bound highway via the
circular ramp in the lower left. They proceeded east and
eventually exited to a northbound road. There were
several suggested lane changes, but some subjects made
fewer or more lane changes as suited them. Most of the
driving was at highway speeds and subjects typically
finished the course within about 8 to 12 minutes.

4.2.2 Improved Lane Following Assessment

With access to new data parameters, we were able to
revise the learning approach from phase I. We
continued to use a multi-layer perceptron approach, but
now with five inputs: lagged steering angle, lane
deviation, relative heading, road curvature and
velocity. This approach improved the accuracy of our
lane following models and extended them to cover
more situations, including curves. Figure 7 (lower
panel) illustrates predictions made by the phase II
system (for a driver on reserved testing data) as
opposed to that made by the phase I system. Prediction
accuracy improved 25-  100% (depending on driver)
with the new system.

FIGURE 5 Relative vehicle heading 

4.2.3 Maneuver Intent Recognition

Armed with more accurate lane following models and
with lane changing data, we turned our attention to
developing a Maneuver Intent Recognizer (MIR). MIR
is a DAWS component that provides the decision
system with context for interpreting the output of the
other modules. For instance, the fit of the lane
following behavioral model will tend to be poor when
the driver is changing lanes. This might spark the
AMA to sound an alarm, but by recognizing when the
driver actually intends to change lanes, such a warning
could be suppressed. Conversely, an intent that may
cause problems, e.g., changing lanes under unsafe
conditions, could trigger a warning.

There are a number of maneuvers common to
normal driving but resources limited us to studying just
three intent states: lane following, lane change left, and
lane change right. Even for these few maneuvers there
was not much simulator data available because some
drivers executed only two or three lane changes.

l

0 1000 2000 3000 4000 5000 6000       7000

a <-- West East----->

FIGURE 6 Course used in the simulator experiments. Drivers started in the lower left
quadrant and proceeded to the upper right corner. The numbered hash marks indicate
lane changes according to the key in the upper left.
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The current data sets do not support the
individualized behavioral model development for lane
following done in phase I-there are not enough
instances to gain a good characterization. MIR operates
by discriminating between the three intent states. When
MIR decides that driver intent is lane following, the
decision system compares his/her performance to the
individualized lane following model to determine if the
driver is behaving normally. Since there are no
individualized models for lane changing, the system
cannot evaluate this behavior against a learned model
at this time. Ultimately, a full DAWS would see many
more examples of maneuver behaviors than in our data
and would learn individualized models for many
common maneuvers. It would still rely on intent
recognition in order to (1) decide which behavioral
model to evaluate current driver behavior against, and
(2) to discriminate uncommon maneuver behaviors
(for which there are no models) from evaluation for
state-based warnings.

4.2.3. I Qualitative Data Description
Before developing analysis methods for lane changing,
we needed to understand how this behavior differs
from lane following. We accomplished this through a
literature review of studies of lane changing and an
analysis of the instances of lane changing in our
simulator data.

Simulator drivers generally showed the lane change
behaviors described in the literature (e.g., Godthelp,
1985; Allen, 1982; Matshushita, et al., 1980).
Qualitatively, relative heading obeyed a rough bell-
shaped curve while steering angle went through a sine
wave cycle. The typical maneuver was executed in
about 5 seconds.

Simulator data reported which lane contained the
vehicle’s center of gravity at every time sample, but
this proved a deceptive characterization. Lane names
were changed in several places by the simulator
program just as some highways get different names for
different stretches. When this happened, the vehicle
was assigned to a new lane without any apparent action
by the driver.

Even a driver-initiated change in the lane
designation was not always a true lane change
maneuver. A short swerve was not considered a lane
change. One driver in particular tended to ride the lane
boundary, and would be credited with dozens of lane
changes when in fact he merely adopted a very unusual
(not  to  ment ion i l legal  and dangerous)  lane
maintenance strategy.

Although many of the lane change maneuvers
followed the classic profile from the literature, others
did not. A driver would sometimes execute a maneuver
in two phases: an initial displacement bringing the

vehicle’s center of gravity near the lane boundary, and
after a short delay, a second displacement to finish the
maneuver. The context for such two-step operations
was unpredictable, but it may relate to the presence of
other vehicles. This sort of variability underlines the
need to take data for these purposes from relatively
natural settings; a laboratory study involving repeated
executions of this maneuver under highly constrained
conditions is unlikely to reveal these cases; the
consequences would limit the effectiveness of any
system based on the overly simplified view.

4.2.3.2 Intent Classification for Lane Changes
There are challenges in identifying lane change intent
without recourse to overt indicators such as turn
signals or psychological indicators l ike eye
movements. Drivers will often adopt and maintain lane
positions well off the centerline. The presence of other
vehicles (data not available to us) may influence this
and the early stages of a lane change maneuver look
very similar to a course correction for lane following.
Steering wheel angle alone is insufficient to infer intent
to change lanes.

Based on our analyses, we found the single most
useful predictor of lane change intent to be the relative
heading angle, y (yaw). Some fairly generic predictors
may be derived from examination of how it varies over
time. We divided the time course into intervals at
places where y becomes zero or changes sign. Within
such an interval, y is then integrated (cumulative
sums), so it will increase (or decrease) monotonically
as the driver maintains a course heading into an
adjacent lane (or off the road). The sums are reset to
zero whenever y becomes zero or changes sign. This
measure has a distinctive hump shape in nearly all lane
changes. It is, however, nonzero at other times too. It
may be refined by scaling it according to the distance
to the lane in which the driver seems to be headed, thus
amplifying the measure when it is executed near the
intended lane boundary. Further refinements accrue by
suppressing the measure when the signs of the lateral
velocity and relative heading contradict the apparent
lane change intent. The attack characteristics of the
resulting lane change indicator also convey some
information.

4.2.3.3 Using the Intent Classification Technique
To help make decisions about intent from the lane
change indicator, we experimented with another
adaptive technique: learning vector quantization
(LVQ), (Kohonen, 1987). L V Q  c o m b i n e s  a
competitive layer of units that adapt to the distribution
of the observed data in some input space. Each unit
effectively “competes” for some portion of the input
space. A subsequent linear layer is trained to make
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classifications based on the winning units. The input
space for our intent recognition problem consisted of
the indicator and its derivatives.

To train this network, we first labeled “true” lane
changes in a post-session analysis. These can be found
easily after the maneuver has occurred since they
invariably correspond to large peak values of the lane
change indicator. The skirts of these peaks were then
taken as the maneuver boundaries. Observations in
these segments were assigned categories “left” or
“right” accordingly. All other observations were placed
in a “following” category. The networks were then
trained on subsets of these classified observations, and
tested on another subset.

Our intent classification approach achieved
accuracies of 92% to 98% depending on driver.
Because the classification of individual observations in
the first second or two of a lane change can be
ambiguous, the output of the classifier can be
smoothed over a number of samples (30 Hz rate) to
provide greater classification confidence.

Figure 8 shows the intent recognizer  output (along
with lane deviation of the vehicle) for a lane change
right maneuver. This case is interesting since the driver
“feints left” quite strongly before making a lane change
right. The feint is picked up as a partial activation of
the Left indicator. Full activation of the Right indicator
occurs between 423 and 428 seconds. The entire
maneuver takes about 5 seconds, although the starting
point is debatable.

4.2.4 Validating Adaptive Learning

Having achieved greater accuracy in our behavioral
models for lane following and techniques for intent
classification, we turned to some initial validation
experiments for our techniques. One of the arguments
for an adaptive warning system is that individual
drivers have different styles. Furthermore, our
approach to providing state-based alarms is based on
the hypothesis that an individual’s driving style
changes as s/he becomes drowsy, inebriated, etc.

Various researchers have demonstrated individual
differences between drivers (e.g., Lechner  and Perrin,
1993) and differences within a drivers’ behavior under
abnormal conditions. For example, Wierwille and
Muto (1981) noted that “Fresh drivers use small,
precise corrections where necessary [but] as time
passes, drivers use coarser corrections.” Similarly,
Mot-timer and Sturgis (1981) showed control
performance of drivers under the influence of alcohol
as similar to that of novices and claimed “This is
further shown by the decrease in the mean path angle
and mean yaw rate frequency bandwidths, which were
decreased in all the alcohol dose conditions.”

To show that our lane following models could
detect such differences is difficult with our existing
simulator data, since all the subjects remained in
control of the vehicle for the entire course. They were
not known to be impaired by alcohol, fatigue or
unusual conditions.

However, it was still possible to indirectly evaluate
the utility of the approach by demonstrating the ability
to detect individual differences between drivers. To
this end, we trained lane following models on half of
the data for each of eight drivers and then tested them
on the remaining half-either from the same or a
different driver. Of interest was whether the model
trained on a given driver is superior for that driver than
models trained for others. The performance measure
was RMS prediction error in steering angle. An
analysis of variance tested this hypothesis in the
resulting comparisons. The single df interaction for
same vs. different was highly significant: F(l,48)  =
15.3, p<0.0005. The lane following model was, on
average, about 1.0 degree of steering angle (or about
25%) superior on the driver for which it had trained.

A similar between-drivers test was carried out for
the lane change classifier model developed for our
MIR. This test also showed a significant (p < 0.005)
performance increment for test sets of drivers on which
they had trained. However, the small number of lane
change observations makes this conclusion highly
tentative-it is unclear whether we have captured a
general characteristic of the driver or something
specific to this trip.

4.2.5 Demonstration System

The development of the MIR in phase II enabled us to
implement a full, if highly simplified, DAWS as
described in Figure 1 as a demonstration of our
concept. The AMA for this software prototype contains
a single individualized behavioral model, that for lane
following. The MIR can discriminate between three
driver intent states: lane following and lane changes
left and right. The Road and Traffic Assessment
module contains only the model of the simulator
course as presented in Figure 6.

Each of these modules provides inputs to the
Decision System. Although simplified, our Decision
System is still capable of providing both state-based
and some event-based warnings. The Decision System
uses the intent classification provided by the MIR to
decide whether or not to compare current driver
behavior against the predictions of the lane following
behavioral model. If current driver behavior while lane
following does not match predictions based on the
normal lane following model for that driver, then a
state-based alarm can be sounded. The optimal criteria
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for performing this comparison has not been finalized
in this research and will require extensive human
subjects testing for reliability. As noted above, since
we do not have access to degraded-state driving data,
the only way we can illustrate this warning approach is
by using a behavioral model trained for one driver to
assess the data from another driver.

A limited-form of event-based alarm can also be
provided using the outputs of the MIR and the Road
and Traffic Assessment modules. Whenever the MIR
detects a lane change intent, the Decision System
checks the road model to see if there is, in fact, a lane
in the direction of the lane change. If not, it infers a
run-off-road event in progress and sounds an event-
based alarm to correct it.

To illustrate this prototype DAWS, we developed
demonstration software that monitors vehicle position,
heading and lane deviation data from a simulator trace
as the driver traverses the course, and presents the
o u t p u t  o f  t h e  A M A  a n d  M I R  m o d u l e s .  T h e
demonstration software also provides “warning”
outputs according to the decision criteria described
above. It allows a user to zoom in on any course
segment and display a selected subset of over a dozen
variables related to vehicle state. The system is written
in Matlab  (by Mathworks Inc.), the mathematical
visualization package used for all of our analyses in
Phase II. It should be portable to any platform with the
Matlab  software, e.g., PC, Macintosh, HP, Sun.

5  CONCLUSIONS

5.1 GENERAL CONCLUSIONS

This project has demonstrated the existence of
significant individual differences in driving style.
Drivers differ widely and consistently in many
parameters including: preferred speed, lane position,
frequency and amplitude of steering corrections, and
timing and rate of lane changing.

We also showed that various adaptive learning
algorithms were able to acquire models of such
differences. There are strengths and weaknesses to
these approaches. We have tested a range of techniques
and parameters sufficient to be confident that our
selected approach provides a good mix of features for
the driving domain.

Finally, we have shown that our learned models can
be used in various ways to produce both state- and
event-based DAWS. Further work is needed to develop
such systems, but our efforts show that such systems
are feasible and provide guidelines on how to construct
them.

5.2 BREAKTHROUGHS AND INNOVATIONS

Major innovations in our work on this program
include:

The demonstration of adaptive modeling techniques
capable of learning individualized models of
driving behavior sufficiently robust to enable
superior predictions of future driving behavior for
the same individual. To the best of our knowledge,
only Onken (1992) has attempted a similar
approach and our techniques are substantially
different from his.

The development of a framework of multiple intent
states and the ability to discriminate between some
of them using only non-intrusive road and vehicle
data.

The integration of both individualized behavioral
models and an intent classification system into a
driver-adaptive warning system architecture, and
the development of approaches to using this very
non-intrusive approach to provide both state-based
and event-based alarms to drivers.

5.3 APPLICATIONS AND PRODUCT RELEVANCE

The product we have been working toward is a driver-
adaptive warning system which, as illustrated in Figure
1, would reside along with the vehicle-state and world
state sensors and with the alarm interface on an
advanced automobile, truck or other human-controlled
vehicle. This DAWS would read vehicle sensors to
learn models of the different authorized drivers of that
vehicle and would then use this knowledge to adjust its
alarm policy to best suit the needs of the individual
drivers. This technology is expected to make all types
of driver-dependent alarms (both event-based: run-off-
road, crash avoidance, overspeed, vehicle following,
etc. and state-based: fatigue, inebriation, inattention,
etc.) more focused and pertinent to the individual
driver. This should, in turn, result in greater driver
acceptance and greater safety.

Many significant issues remain to be addressed
before such a system can be productized. The highest
priority issue is that a DAWS must have access to
substantial vehicle and road sensor data. These data are
not currently available from either the vehicle or the
highway. While the necessary sensors can be added to
the vehicle by original equipment manufacturers or as
after-market products, the roadway markers or
references that they sense will probably require
changes to the highway infrastructure. These will
likely be in the form of magnetic tape or reflective
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markers laid down on or into the pavement. Many
advanced highway concepts are under investigation
that share this need for a road reference. Still, in order
for a DAWS to be realized, the public sector will have
to make a commitment to provide the necessary
infrastructure. A second and critical issue of a public
nature is that of the potential liability that will be
incurred by the manufacturer of a DAWS-like system.
In the current legal environment of the United States,
this serves as a strong deterrent to companies that
might otherwise more aggressively pursue DAWS and
related technology development.

The remaining issues in the productization of a
DAWS are largely technical. With the appropriate
resources applied to the problem, we believe that they
all are resolvable over approximately a five year
development time frame. These technical issues are
discussed in detail below in Section 5.4.

In summary, Honeywell has no plans to market a
DAWS at this time, though the techniques developed
here are being considered for application to our aircraft
warning systems, to individualizing operator support
systems in industrial processing domains, and for their
ability to provide individual human performance
models across our extensive controls research and
development activities. In addition to these internal
activities, Ford Motor Company has expressed interest
in this program and we will continue to work with
them, as well as others, to find ways to bring this work
closer to market and application.

5.4 FUTURE WORK TOWARD DAWS
IMPLEMENTATION

The goal of this program was to develop approaches to
learning individualized driver behavior models for a
DAWS. We have successfully accomplished this goal.
Future work should extend and refine this modeling
approach, while also addressing the system issues--
particularly in the sensor area-- that need to be
resolved for a DAWS to become a reality. The steps
envisioned for DAWS implementation are outlined
below.

The first step in furthering the evolution of this
technology will be to validate, on a larger, more varied
driver database, the learning approaches we have
already developed. For example, we know as a result

of this study that our current algorithms, using only a
few vehicle parameters over five minutes of driving
can acquire or learn a model that significantly
enhances our ability to predict driver behavior. Exactly
how good these predictions can get, given more
extended periods of learning and more parameters,
remains a key question to be resolved. Also, we must
extend our approach to additional and more varied

intent states. A taxonomy of driver intent states will
have to be developed and a behavioral model acquired
for each of them. The system’s task of discriminating
among intent states becomes more difficult as the
number  of  possible  s ta tes  increases, so the
development of this taxonomy and the models to
match it will be a critical task for realizing a DAWS.

A fundamental prerequisite to the further modeling
developments described above is the availability of
more extensive driver data. It will be necessary to
collect data from studies specifically designed for our
purposes. Especially important will be the collection of
more complete driver action data (steering wheel and
accelerator inputs, lane change signal actions, etc.) and
world state data (locations and a t t r ibutes  of
neighboring vehicles on the highway, etc.). Also, the
collection of data for individual drivers over an
extended period of time will be essential to assess the
relationships between model acquisition or adaptation
time and predictive power. Finally, we will need data
showing drivers who are not at their best (fatigued,
drunk, etc.), preferably the same driver under both
conditions. Examples of naturalistic run-off-road
incidents also will be desirable.

Where will the data come from? Experiments
conducted in a driving simulator appear to be the best
option during this next stage of development.
Simulators provide the opportunity to easily record all
the parameters we need for future developments. By
their nature, they also can provide “ground truth”
information describing the position of vehicles on the
roadway, not to mention the precise location of the
roadway itself. Simulators also have the advantage of
allowing experiments with impaired driver states to be
conducted safely. Run-off-the-road incidents can be
observed with no harm to people or property.

The only question here is whether or not a driving
simulator can provide sufficient fidelity in the
dynamics and control responses of the vehicle to
generate data that is sufficiently realistic. In order to
mitigate this concern, we would recommend continued
use of the 6-DOF  motion base Iowa Driving Simulator
to support future DAWS developments. This simulator
is based on the Real-Time Recursive Dynamics
(RTRD) modeling environment, recently developed at
Iowa under NHTSA funding, to provide extremely
high fidelity dynamics in vehicle simulations,
Although validation of the Iowa Driving Simulator
dynamics has not been completed, it appears, from our
experience, to generate data of a form and level of
complexity very comparable to real driving.

Refining the necessary sensor technology to support
a DAWS will be another major step in the development
and implementation process. These sensor
developments can be done in parallel with the model
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development activities described above. Critical to the
DAWS models will be a reliable way to sense road
references (either center or edge). From these, DAWS
will extract the relative heading measure that we have
found to be fundamental to our predictions. Magnetic
sensing technology holds great promise as a cost-
effective, all-weather approach to this problem. Further
development of this technology in order to obtain the
accuracy required by a DAWS should be a high
priority.

Other vehicles in the vicinity of the subject vehicle,
their speed and acceleration, also should be sensed for
DAWS to recognize maneuver intents and determine
safety. Although the technology for these proximity-
type sensors already exists, the specific DAWS
requirements for them will have to be defined.

Finally, having completed the necessary mode!
refinements and developed the necessary sensor
technology, an extended series of driver performance
and acceptance tests will have to be conducted. The
initial test of the system should probably take place
within the safe and controlled confines of the driving
simulator, where situational and driver variables can be
readily manipulated to challenge the system. Later tests
must involve the complete DAWS, interacting with
real sensors on a real vehicle in real traffic.
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The driving simulator data purchased from the
University of Iowa proved to be both more and less
than expected. Organizing, refining and processing this
data for use with our learning algorithms took a
significant portion of the initial phases of this contract.
Hence, the nature of the data and the problems we
encountered with it will be discussed in some detail
below.

Our first task in working with the Iowa data was to
isolate relevant sect ions  f rom each dr iver’s
experimental sessions which illustrated simple lane-
following behavior on straight road segments. One
problem we encountered early on was the fact that the
simulation laboratory at Iowa does not save all of the
data collected from any given simulation run. In fact,
only the variables that are of interest for the immediate
experiment are saved; most other data is discarded. For
the experiment which seemed best suited for our needs,
the data which were available in the laboratory’s files
consisted of measurements of the following variables,
collected at a rate of 30 Hz, for each driver:

vehicle center of gravity position in three
dimensions

vehicle speed

vehicle rack position

lane deviation: vehicle deviation from center of
current lane

road type: straight or curved

Of these, the center of gravity position was of little
use, because we did not have the position of the center
of the current lane. Accordingly, there was no way to
relate position in three-dimensional space to lane
deviation. As a result, we were unable to make use of
raw position in our experiments (although the raw
position has helped us to identify sections of the data
representing lane-following behavior). The road type
variable was not computed reliably so that variable
also could not be used.

The variables we were left with, then, were lane
deviation, velocity and rack position. While still
offering a feasible data set from which to predict
driving behavior, note that this set does not include
many variables which we might expect to improve
those predictions. We do not have many of the
variables that would indicate driver intent such as use
of directional indicators. We also have only measures
of the vehicle’s state (speed and rack position) but no
direct measures of the driver’s actions that affect the
vehicle’s state such as brake and accelerator position.
Finally, we had no indication of proximity of other

APPENDIX: DRIVING SIMULATOR DATA ISSUES

vehicles on the road, obviously an important
consideration when attempting to identify, e.g., a
passing maneuver.

Each of these factors had the effect of making the
job of a learning algorithm more difficult. In order to
follow this research direction further, we should collect
data in experiments specifically designed to serve the
needs of the warning system project. More details on
this topic will be provided in section 3 below.

The experiments reported here required data that
described drivers trying to stay in a lane on straight
roads; but the data we obtained showed this behavior
mixed with lane changes, curves, etc. Since all of the
subjects followed one of two tracks, we were able to
use the center of gravity information to determine
sections of the track which represented relatively
straight roadway. For most subjects, there were three
such sections. We have extracted data for those
sections for each subject. This is essentially the data
over which we have trained and evaluated the various
learning methods described in the main body of this
report.

Two additional problems needed to be resolved.
First, these segments still contained some undesirable
driving behaviors, in particular, some lane change
behaviors. We developed a simple heuristic filter to
identify such maneuvers, and then removed them from
the segments.

A second problem was the presence of substantial
discontinuities and noise in the data. There was a large
and systematic noise component in the lane deviation
data owing to choices made in the simulation software
which determined the simulated car’s position relative
to the roadway. This was manifested as instantaneous
discontinuities and transpositions in the lane deviation
data.

We developed a simple model of the kinds of errors
that were present and then applied an interpolating
filter on the data to remove the discontinuities. The
process of identifying the noise (and, in particular,
distinguishing noise from valid lane changes) was
quite time-consuming, as was the development of the
filter. The application of the filter was also labor-
intensive; since we were filtering a derived measure,
the filter was not uniformly successful.

This data organization and refmement effort, which
we had anticipated would take roughly one month,
instead consumed four months of the project. The end
result of this effort was the development of a data set
for the first phase experiment. That data set included
measures of speed, rack position and lane deviation for
three episodes of lane-keeping behavior for each of
thirty-eight subjects.
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